EN

L.Z. Zhang+, Z.Q. Chen+, S.H. Zheng, S. Qin, J.M. Wang, C. Chen, D. Liu*, L.F. Wang, G.L. Yang, Y.Y. Su, Z.-S. Wu*, X.H Bao, J. Razal, W.W. Lei*.
Journal of Materials Chemistry A, 2019, 7, 14328-14336.
DOI: 10.1039/C9TA03620B [PDF]

发布时间:2019-05-20    栏目名称:2019

L.Z. Zhang+, Z.Q. Chen+, S.H. Zheng, S. Qin, J.M. Wang, C. Chen, D. Liu*, L.F. Wang, G.L. Yang, Y.Y. Su, Z.-S. Wu*, X.H Bao, J. Razal, W.W. Lei*.
Journal of Materials Chemistry A, 2019, 7, 14328-14336.
DOI: 10.1039/C9TA03620B [PDF]

   
                                     
Asymmetric micro-supercapacitors (AMSCs) are considered to be highly competitive miniaturized energy-storage units for wearable and portable electronics. However, the energy density, voltage output and fabrication technology for AMSCs remain challenges for practical applications. Herein, we adopt plasma reduced and nitrogen-doped graphene oxide with high nitrogen content of 8.05% and ultra-fine MoO2 nanoparticles with diameter 5-10 nm as electrode material for high-energy flexible all-solid-state AMSCs. The AMSCs based on plasma reduced and nitrogen-doped graphene oxide (PNG) and plasma reduced and nitrogen-doped graphene oxide-MoO2 composite films (PNG-MoO2) can be integrated on diverse substrates (e.g., cloth, glass, leaf, and polyethylene terephthalate film (PET)) and tailored into various planar geometries microelectrodes by accurate laser cutting. The resulting PNG//PNG-MoO2-AMSCs exhibit high working voltage of 1.4 V, a significant areal capacitance of 33.6 mF cm-2 and outstanding volumetric capacitance of 152.9 F cm-3 at 5 mV s-1, and offer exceptionally high energy density of 38.1 mWh cm-3, outperforming most reported AMSCs. Furthermore, the microdevices demonstrate excellent stability of electrochemical performance under various bending conditions up to 180°, and without obvious capacitance degradation even after being bent at 60°, 1000 times. Further, PNG//PNG-MoO2-AMSCs displayed exceptionally serial and parallel integration to boost the output of voltage and capacitance. This work demonstrates the great potential of such AMSCs for practical application in miniaturized, wearable, and flexible electronics.

中国科学院大连化学物理研究所

大连市中山路457号

邮编:116023

版权所有 © 二维材料化学与能源应用研究组

首页 / 组长简介 / 研究方向 / 研究组成员 / 发表论文 / 新闻 / 联系我们