EN

S.H. Zheng, J.X. Ma, K.X. Fang, S.W. Li, J.Q. Qin, Y.G. Li, J.M. Wang, L.Z. Zhang, F. Zhou, F.Y. Liu, K. Wang, Z.-S. Wu* 
Advanced Energy Materials, 2021, 11, 2003835.

DOI: 10.1002/aenm.202003835 [PDF]

发布时间:2021-03-05    栏目名称:2021

S.H. Zheng, J.X. Ma, K.X. Fang, S.W. Li, J.Q. Qin, Y.G. Li, J.M. Wang, L.Z. Zhang, F. Zhou, F.Y. Liu, K. Wang, Z.-S. Wu*

Advanced Energy Materials, 2021, 11, 2003835.

DOI: 10.1002/aenm.202003835 [PDF]

To cate for the rapid development of flexible, wearable, and implantable microelectronics, miniaturized and integrated energy storage devices with mechanically robust properties, high voltage and highly compatible integration are in extreme demand. Here,potassium ion micro-supercapacitor (KIMSCs) is rationally designed by applying MXene-derivedpotassium titanate (KTO)nanorods anode and porousactivated graphene (AG) cathodeto power the sensitively integrated pressure sensing system. Benefiting from the advanced nanostructure ofKTO nanorods, it offers a high potassium ion storage capacity of 145 mAh/g. Notably, the constructed KIMSCs exhibit a large operating voltage window of 3.8 V, outperforming the previously reported micro-supercapacitors. Furthermore, an extraordinary volumetric energy density of34.1 mWh/cm3is achieved for KIMSCs with robust rate capability and remarkable capacitance retention, due to the dominated capacitive mechanism and tiny volume change of reversible intercalation/deintercalation of K cations in KTO and adsorption/desorption of bis(trifluoromethanesulfonyl) imide (TFSI)anions on AG.More importantly, a KIMSC compatibly integrated with wireless pressure sensor on a flexible substrate can monitor body movement. Therefore, this work not only provides insight on designing high-performance KIMSCs, but also presents a blueprint for KIMSCs powered flexible electronics.

中国科学院大连化学物理研究所

大连市中山路457号

邮编:116023

版权所有 © 二维材料化学与能源应用研究组

首页 / 组长简介 / 研究方向 / 研究组成员 / 发表论文 / 新闻 / 联系我们