EN

J.X. Ma, Y.G. Li, Z.M. Wang, B. Zhang, J.F. Du, J.Q. Qin, Y.X. Cao, L.Z. Zhang, F. Zhou, H. Wang, S.H. Zheng *, L. Feng, S.(F.) Liu and Z.-S. Wu *

Materials Today, 2024, 58.

DOI: 10.1016/j.mattod.2024.02.006 [PDF]

发布时间:2024-02-25    栏目名称:2024

J.X. Ma, Y.G. Li, Z.M. Wang, B. Zhang, J.F. Du, J.Q. Qin, Y.X. Cao, L.Z. Zhang, F. Zhou, H. Wang, S.H. Zheng *, L. Feng, S.(F.) Liu and Z.-S. Wu *

Materials Today, 2024, 58.

DOI: 10.1016/j.mattod.2024.02.006 [PDF]

Printable micro-supercapacitors (MSCs) with remarkable versatility and customizability, high power density and long cycling lifespan, are regarded as a promising class of miniaturized power source for wearable and portable microelectronics. Herein, we demonstrate a novel Fe-based zeolitic imidazolate framework (Fe-ZIF)/graphene (FZG) heterostructure with high specific surface area and outstanding electrical conductivity for planar MSCs (FZG-MSCs) worked in a high-voltage ionic liquid gel electrolyte via a spray-printed strategy. The fully printed FZG-MSCs deliver a high areal energy density of 9.5 μWh/cm2, extraordinary cyclability, and tailored voltage/capacitance output. Further, using a fully printed FZG-MSC, we seamlessly integrate a monolithically planar all-flexible self-sustained sensor system with a mounted solar cell and a printable NH3 gas sensor on the same side of single flexible substrate. The self-sustained sensor system exhibits high-sensitivity NH3 detection with a good response of 18.3% at 20 ppm and linear sensibility exposed to 2-20 ppm. Such a fully integrated system can utilize the converted solar energy stored in the MSC, and offer efficient electricity to power microelectronics whenever needed. Therefore, this contribution of printable planar device and integrated system paves a new avenue for constructing flexible microelectronics.

中国科学院大连化学物理研究所

大连市中山路457号

邮编:116023

版权所有 © 二维材料化学与能源应用研究组

首页 / 组长简介 / 研究方向 / 研究组成员 / 发表论文 / 新闻 / 联系我们