508
Home
Dr.Wu
Research
Member
Publications
News
Contact
Publications
 
All
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2007
2006
   
Recent advancements and next of aqueous rechargeable lithium-ion batteries
Posted:2023-10-07 16:15    Column:2023

Z.H. Ren, X.Y. Shi*, Z.-S. Wu*

Next Energy, 2023, 1.

DOI: 10.1016/j.nxener.2023.100068 [PDF]

Aqueous rechargeable lithium-ion batteries (ARLBs) have attracted widespread attention due to the inherent merits of low cost, high safety, and environmental friendliness in comparison to their nonaqueous counterparts. However, the limited electrochemical stability window (ESW) of aqueous electrolytes near 1.23 V greatly restricts the selection of electrode materials and improvement of energy density of ARLBs. In the early stage, most works primarily focused on the modification of electrode materials with operating voltages in the narrow ESW range to enhance the cyclability. After the“water-in-salt” electrolyte came out, various approaches have been devised to continually widen ESW of aqueous electrolytes and increase the energy density of ARLBs. Herein, we overview the historical development and recent advancements of ARLBs, focusing on the aspects of the electrode materials (modification strategies of cathode and anode) and the novel electrolytes (e.g., water-in-salt electrolytes, water-in-bisalt electrolytes, hydrate-melt electrolytes, hybrid aqueous/non-aqueous electrolytes, gel electrolytes) in detail. Finally, the existing key issues and future prospects are also presented for the next-generation ARLBs.


Dalian Institute of Chemical Physics, CAS
457 Zhongshan Road Dalian, China 116023
E-mail: wuzs@dicp.ac.cn

Copyright © 2D Materials Chemistry & Energy Applications Group. All Rights Reserved.

Home / Dr.Wu / Research / Member / Publications / News / Contact