The Wu Lab’s research interests include graphene and 2D materials, surface and nano-electrochemistry, energy storage and conversion devices, and their innovative applications in challenging energy technologies and environmental science tackling by the combined chemistry, materials science, nanotechnology and surface science. Our current scientific research concentrates on controlled preparation and processing of a brand new generation of graphene and 2D materials arranging from 2D inorganic to polymer nanosheets; rational design and synthesis of new-type atomically thin nanosheet-based nanostructures with precisely controlled chemical composition, structural morphology and physical dimensionality; multi-functional characterization of new chemical, optical, electronic, thermal and electrochemical properties; and elaborated exploration of these 2D nanosheet-based electrochemically active nanomaterials for the breakthrough energy devices, and fundamental studies of the charge-discharge reaction mechanism of the electrodes and energy devices with in-situ spectroscopy and microscopy characterization techniques. A special emphasis is placed on the synergetic integration of multi-composition, multi-structure and multi-properties of these functionalized 2D materials at the nanoscale, and eventually developing novel-concept, unprecedented performance advanced energy storage and conversion nanosystems, e.g., micro-supercapacitors, micro-batteries, supercapacitors, advanced energy batteries, and fuel cell.