L.Y. Guo, M.R. Wang, R.H. Lin*, J.X. Ma, S.H. Zheng, X.L. Mou, J. Zhang*, Z.-S. Wu, Y.J. Ding*
Chinese Journal of Chemical Engineering, 2023, 53.
DOI: 10.1016/j.cjche.2022.01.032 [PDF]
Synthesis of new carbon nanostructures with tunable properties is vital for precisely regulating electrochemical performance in the wide applications. Herein, we report a novel approach for the oxidative polymerization of N- and P-bearing copolymers from the self-assembly of three different monomers (aniline, pyrrole, and phytic acid), and further prepare the respective carbon nanostructures with relatively consistent N dopant (6.2%–8.0%, atom) and varying P concentrations (0.4%–2.8%, atom) via controllable pyrolysis. The impacts of phytic acid addition on the compositional, structural, and morphological evolution of the copolymers and the resulting nanocarbons are well studied through a spectrum of characterizations including N2 sorption, Fourier transform infrared spectroscopy, gel permeation chromatograph, scanning/transmission electron microscopy, and X-ray photoelectron spectroscopy. Gradual fragmentation of the nanosphere structures is evidenced with increasing addition of phytic acid, leading to different nanostructures from hollow nanospheres to 3D aggregates. Nanocarbons decorated with N and P dopants from pyrolysis are further utilized as anode materials in lithium-ion batteries, demonstrating enhanced electrochemical performance, i.e., a reversible capacity of 380 mA·h·g−1 at 2 A·g−1 for NPC-0.5 during 200 cycles. The superior performance originates from the balanced porosity, and appropriate concentrations of P and pyrrolic N, thus pointing the direction for designing high-performance anode materials.