F. Su, S.h. Zheng, Z.-S. Wu*
Chinese Chemical Letters, 2021, 32, 914-917.
DOI: 10.1016/j.cclet.2020.07.025 [PDF]
Porous structure and heteroatom doping are two key parameters for significantly boosting the capacitive performance of graphene-based materials. Herein, we report a facile approach to prepare one-dimensional (1D) nitrogen-doped holey graphene nanoscrolls (NHGNSs) through cold quenching treatment of two-dimensional graphene oxide sheets, followed by thermal annealing in the successive atmosphere of NH3and air. Benefiting from the synergy of the unique 1D tubular morphology, abundant nanoholes and nitrogen doping, the NHGNSs exhibit a high specific capacitance of 126 F/g at 1 A/g in ionic liquid electrolyte and excellent rate capability with 81% of the capacitance retained at 20 A/g. Furthermore, the fabricated symmetric supercapacitors based on NHGNSs achieve both high energy density of 53.5 Wh/kg at 875 W/kg and power density of 17.5 kW/kg at 43.4 Wh/kg. The simple synthetic process and superior electrochemical performance suggest the great potential of NHGNSs for supercapacitor application. |