508
Home
Dr.Wu
Research
Member
Publications
News
Contact
Conductive Porous Polymer Supercapacitors Published in Angew.Chem.Int.Ed. Congratulation!
Posted:2017-12-05    Column:2017News

Our cooperative paper entitled with "Conductive Microporous Covalent Triazine-Based Framework for High-Performance Electrochemical Capacitive Energy Storage" has been published online in high-impact journal Angewandte Chemie International Edition (IF=11.99). Many thanks to our cooperative scientists of Prof.W.-Q. Deng and Prof.X.H. BAO at DICP. Warm Congratulation to Shuanghao Zheng on his big contribution!

       

Nitrogen enriched porous nanocarbon, graphene and conductive polymers attracted increasing attention in the application of supercapacitors. However, the electrode material possessing large specific surface area (SSA) and high nitrogen doping concentration simultaneously, which is needed for excellent supercapacitors, has not been achieved thus far. Herein, we developed a class of tetracyanoquinodimethane-derived conductive microporous covalent triazine-based frameworks (marked as TCNQ-CTFs) with high nitrogen content (> 8%) and large SSA (> 3600 m2 g-1) at the same time. These CTFs exhibited excellent specific capacitances with the highest value exceeding 380 F g-1, considerable energy density of 42.8 Wh kg-1 and remarkable cycling stability without any capacitance degradation after 10000 cycles. This class of CTFs should hold a great potential as high-performance electrode material for electrochemical energy storage system.

X-MOL news: http://www.x-mol.com/news/12020

See the article: Y. Li,† S.H. Zheng,† X. Liu, P. Li, L. Sun, R. Yang, S. Wang, Z.-S. Wu,* X.H. Bao, W.-Q. Deng*, Conductive Microporous Covalent Triazine-Based Framework for High-Performance Electrochemical Capacitive Energy Storage, Angewandte Chemie International Edition, 2017, DOI: 10.1002/ange.201711169.



Dalian Institute of Chemical Physics, CAS
457 Zhongshan Road Dalian, China 116023
E-mail: wuzs@dicp.ac.cn

Copyright © 2D Materials Chemistry & Energy Applications Group. All Rights Reserved.

Home / Dr.Wu / Research / Member / Publications / News / Contact