508
Home
Dr.Wu
Research
Member
Publications
News
Contact
Publications
 
All
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2007
2006
   
Bottom-Up Fabrication of Sulfur-Doped Graphene Films Derived from Sulfur-Annulated Nanographene for Ultrahigh Volumetric Capacitance Micro-Supercapacitors
Posted:2017-03-07 20:43    Column:2017

Z.-S. Wu*, Y.-Z. Tan, S.H. Zheng, S. Wang, K. Parvez, J.Q. Qin, X.Y. Shi, C.L. Sun, X.H. Bao, X.L. Feng*, and K. Müllen*
Journal of the American Chemical Society 2017, 139 (12): 4506–4512.
DOI: 10.1021/jacs.7b00805. [PDF]

Research Highlight:  Prof. LIU Zhong-Fan, Bottom-up Fabrication of Sulfur-Doped Graphene Films for Micro-Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, doi: 10.3866/PKU.WHXB201703171. [PDF]

                          

Abstract

Heteroatom doping of nanocarbon films can efficiently boost the pseudocapacitance of micro-supercapacitors (MSCs), however, wafer-scale fabrication of sulfur-doped graphene films with a tailored thickness and homogeneous doping for MSCs remains a great challenge. Here we demonstrate the bottom-up fabrication of continuous, uniform, ultrathin sulfur-doped graphene (SG) films, derived from the peripherical tri-sulfur-annulated hexa-peri-hexabenzocoronene (SHBC), for ultrahigh-rate MSCs (SG-MSCs) with landmark volumetric capacitance. The SG film was prepared by thermal annealing of the spray-coated SHBC-based film, with assistance of a thin Au protecting layer, at 800 oC for 30 min. SHBC with twelve phenylthio groups decorated at the periphery is critical as precursor for the formation of the continuous and ultrathin SG film, with a uniform thickness of ~10.0 nm. Notably, the as-produced all-solid-state planar SG-MSCs exhibited a highly stable pseudocapacitive behavior with an volumetric capacitance of ~582 F cm-3 at 10 mV s-1, excellent rate capability with a remarkable capacitance of 8.1 F cm-3 even at an ultrahigh rate of 2000 V s-1, ultrafast frequency response with a short time constant of 0.26 ms, and ultrahigh power density of ~1191 W cm-3. It is noteworthy that these values obtained are among the best values for carbon-based MSCs reported to date. Further, the as-produced SG film will offer numerous opportunities as an outstanding carbon-based material for electrochemical energy storage and conversion systems, such as metal-free oxygen reduction catalysts, Li-S batteries, and sensors.

Dalian Institute of Chemical Physics, CAS
457 Zhongshan Road Dalian, China 116023
E-mail: wuzs@dicp.ac.cn

Copyright © 2D Materials Chemistry & Energy Applications Group. All Rights Reserved.

Home / Dr.Wu / Research / Member / Publications / News / Contact