508
Home
Dr.Wu
Research
Member
Publications
News
Contact
Publications
 
All
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2007
2006
   
All-Solid-State High-Energy Planar Hybrid Micro-Supercapacitors based on 2D VN Nanosheets and Co(OH)2 Nanoflowers
Posted:2018-03-02 14:57    Column:2018

S. Wang, Z.-S. Wu*, F. Zhou, X. Y. Shi, S. H. Zheng, J. Q. Qin, H. Xiao, C. L. Sun, X. H. Bao,
npj 2D Materials and Applications, 2018, 2, 7.
DOI:10.1038/s41699-018-0052-8 [PDF]

Invited Research Paper by the Associated Editor, Prof. Xinran Wang, of npj 2D Materials and Applications

              

Planar micro-supercapacitors are recognized as one of the most competitive on-chip power sources for integrated electronics. However, most reported symmetric MSs suffer from low energy density. Herein, we demonstrate the facile mask-assisted fabrication of new-type all-solid-state planar hybrid micro-supercapacitors with high energy density, based on interdigital patterned films of porous vanadium nitride nanosheets as negative electrode and Co(OH)2 nanoflowers as positive electrode. The resultant planar hybrid micro-supercapacitors display high areal capacitance of 21 mF cm-2 and volumetric capacitance of 39.7 F cm-3 at 0.2 mA cm-2, and exhibit remarkable energy density of 12.4 mWh cm-3 and power density of 1750 mW cm-3, based on the whole device, outperforming most reported planar hybrid micro-supercapacitors and planar asymmetric micro-supercapacitors. Moreover, all-solid-state planar hybrid micro-supercapacitors show excellent cyclability with 84% capacitance retention after 10000 cycles, and exceptionally mechanical flexibility. Therefore, our proposed strategy for the simplified construction of planar hybrid micro-supercapacitors will offer numerous opportunities of utilizing graphene and other 2D nanosheets for high-energy microscale supercapacitors for electronics.

Dalian Institute of Chemical Physics, CAS
457 Zhongshan Road Dalian, China 116023
E-mail: wuzs@dicp.ac.cn

Copyright © 2D Materials Chemistry & Energy Applications Group. All Rights Reserved.

Home / Dr.Wu / Research / Member / Publications / News / Contact