508
Home
Dr.Wu
Research
Member
Publications
News
Contact
Publications
 
All
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2007
2006
   
Switchable Adhesion of Micropillar Adhesive on Rough Surfaces
Posted:2019-11-25 14:59    Column:2019

D. Tan, X. Wang, Q. Liu, K. Shi, B.S. Yang, S. Liu, Z.‐S. Wu, L.J. Xue*

Small, 2019, 15(50), 1904248.

DOI:10.1002/smll.201904248 [PDF]

Switchable structured adhesion on rough surfaces is highly desired for a wide range of applications. Combing the advantages of gecko seta and creeper root, a switchable fibrillar adhesive composed of polyurethane (PU) as the backing layer and graphene/shape memory polymer (GSMP) as the pillar array is developed. The photothermal effect of graphene (under UV irradiation) changes GSMP micropillars into the viscoelastic state, allowing easy and intimate contact on surfaces with a wide range of roughness. By controlling the phase state of GSMP via UV irradiation during detachment, the GSMP micropillar array can be switched between the robust‐adhesion state (UV off) and low‐adhesion state (UV on). The state of GSMP micropillars determines the adhesion force capacity and the stress distribution at the detaching interface, and therefore the adhesion performance. The PU‐GSMP adhesive achieves large adhesion strength (278 kPa), high switching ratio (29), and fast switching (10 s) at the same time. The results suggest a design principle for bioinspired structured adhesives, especially for reversible adhesion on surfaces with a wide range of roughness.

Dalian Institute of Chemical Physics, CAS
457 Zhongshan Road Dalian, China 116023
E-mail: wuzs@dicp.ac.cn

Copyright © 2D Materials Chemistry & Energy Applications Group. All Rights Reserved.

Home / Dr.Wu / Research / Member / Publications / News / Contact