508
Home
Dr.Wu
Research
Member
Publications
News
Contact
Publications
 
All
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2007
2006
   
Free-Standing Integrated Cathode Derived from 3D Graphene/Carbon Nanotube Aerogels Serving as Binder-Free Sulfur Host and Interlayer for Ultrahigh Volumetric-Energy-Density Lithium-Sulfur Batteries
Posted:2019-04-02 08:40    Column:2019

H.D. Shi, X.J. Zhao, Z.-S. Wu*, Y.F. Dong, P.F. Lu, J. Chen, W.C. Ren, H.-M. Cheng, X.H. Bao
Nano Energy, 2019, 60: 743-751.
DOI: 10.1016/j.nanoen.2019.04.006 [PDF]

             

The actual applications of lithium sulfur (Li-S) batteries are significantly obstructed by limited cyclability and low volumetric-energy-density due to the shuttling effect of polysulfides and low mass density of sulfur cathode. Herein, we report a free-standing, compact, conductive and integrated cathode (G/CNT-S//G/CNT), constructed by compressing graphene/carbon nanotubes (G/CNT) aerogels, simultaneously serving as bi-functionalities of binder- and metal-current-collector-free sulfur host (G/CNT-S) and interlayer (G/CNT), for high volumetric-energy-density Li-S batteries. The G/CNT aerogels display three-dimensional interconnected porous network, large surface area (363 m2 g-1) and high electrical conductivity (67 S m-1), which can endow the cathode with ultrahigh volumetric mass density (1.64 g cm-3) and superior electron-ion transport network. Meanwhile, the compressed ultralight G/CNT film can act as flexible interlayer for synergistically suppressing the polysulfide shuttling via both chemical interaction and physical restriction. Consequently, the compact cathodes, achieve high capacity of 1286 mAh g-1 at 0.2 C and long-term cyclability with an extremely low decay rate of 0.06% over 500 cycles at 2 C. Most importantly, our compact cathodes represent unprecedented volumetric capacity of 1841 Ah L-1 and volumetric-energy-density of 2482 Wh L-1, both of which are the highest values of Li-S batteries reported to date. Therefore, this proposed strategy will open a new avenue for developing high volumetric-energy-density Li-S batteries.

Dalian Institute of Chemical Physics, CAS
457 Zhongshan Road Dalian, China 116023
E-mail: wuzs@dicp.ac.cn

Copyright © 2D Materials Chemistry & Energy Applications Group. All Rights Reserved.

Home / Dr.Wu / Research / Member / Publications / News / Contact