508
Home
Dr.Wu
Research
Member
Publications
News
Contact
Publications
 
All
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2007
2006
   
High-Energy-Density Hydrogen-Ion-Rocking-Chair Hybrid Supercapacitors Based on Ti3C2Tx MXene and Carbon Nanotubes Mediated by Redox Active Molecule
Posted:2019-05-30 13:58    Column:2019

M.M. Hu, C. Cui, C. Shi, Z.-S. Wu*, J.X. Yang, R.F. Cheng, T.J. Guang, H.L. Wang, H.X. Lu, X.H. Wang*

ACS Nano, 2019,13, 6, 6899-6905.

DOI:10.1021/acsnano.9b01762 [PDF]

MXenes have emerged as promising high-volumetric-capacitance supercapacitor electrode materials, whereas their voltage windows are not wide. This disadvantage prevents MXenes from being made into aqueous symmetric supercapacitors with high energy density. To attain high energy density, constructing asymmetric supercapacitors is a reliable design choice. Here, we propose a strategy to achieve high energy density of hydrogen ion aqueous-based hybrid supercapacitors by integrating a negative electrode of Ti3C2Tx MXene and a positive electrode of redox-active hydroquinone (HQ)/carbon nanotubes. The two electrodes are separated by a Nafion film that is proton permeable in H2SO4 electrolyte. Upon charging/discharging, hydrogen ions shuttle back and forth between the cathode and anode for charge compensation. The proton-induced high capacitance of MXene and HQ, along with complementary working voltage windows, simultaneously enhance the electrochemical performance of the device. Specifically, the hybrid supercapacitors operate in a 1.6 V voltage window and deliver a high energy density of 62 Wh kg–1, which substantially exceeds those of the state-of-the-art aqueous asymmetric supercapacitors reported so far. Additionally, the device exhibits excellent cycling stability and the all-solid-state planar hybrid supercapacitor displays exceptional flexibility and integration for bipolar cells to boost the capacitance and voltage output. These encouraging results provide the possibility of designing high-energy-density noble-metal-free asymmetric supercapacitors for practical applications.

Dalian Institute of Chemical Physics, CAS
457 Zhongshan Road Dalian, China 116023
E-mail: wuzs@dicp.ac.cn

Copyright © 2D Materials Chemistry & Energy Applications Group. All Rights Reserved.

Home / Dr.Wu / Research / Member / Publications / News / Contact