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A B S T R A C T

N-doped graphene (NG) was synthesized by annealing reduced graphene oxide (RGO) in an

ammonia atmosphere. The dependence of the nitrogen content on the annealing temper-

ature and the type of doping of NG were investigated. The photoluminescence (PL) proper-

ties of the RGO and NG samples were studied. The results show that RGO exhibits strong

ultraviolet (UV) PL at 367 nm. The PL of RGO can be quenched by doping it with N and

the quenching efficiency depends on the pyridine N content.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Graphene, a two-dimensional single atomic layer of hexagra-

phenenal carbon network, has aroused special attention

since it was isolated by Geim et al. in 2004 [1]. Recent reports

showed that graphene dispersions have a significant optical

response to nanosecond laser pulses at 532 and 1064 nm [2],

and functionalization of graphene can alter its electronic

structure resulting in interesting electronic and optical prop-

erties. Moreover, graphene oxide (GO) has interesting nonlin-

ear absorption in dimethylformamide and a large two-photon

absorption coefficient [3].

Furthermore, fluorescence quenching has been widely

used in the selective detection of biomolecules, resonance Ra-

man spectroscopy, etc. [4–6]. For example, fluorescence

quenching of porphyrin by graphene and photophysical prop-

erties of porphyrin-graphene complexes have been reported

[7,8]. Wherein, it is believed that electron or energy transfer

between graphene and the aromatic molecule would be

responsible for the phenomenon. Matte et al. reported the
er Ltd. All rights reserved
(N. Tang).
quenching of fluorescence of two aromatic molecules by

non-covalent interaction with graphene, and demonstrated

the occurrence of intermolecular photo-induced electron

transfer [9]. More recently, Bi et al. confirmed that GO can

highly adsorb single-stranded DNA, resulting in effectively

quenching the emission of organic dyes [10]. Theaterical stud-

ies also confirmed that long-range energy transfer is effective

in the fluorescence quenching of electron donor molecule in

the presence of graphene [11,12].

Notably, many efforts have been devoted to investigating

N-doped graphene (NG) because doping graphene with N could

be a promising route to improve its electronic and optical

properties for various applications. For example, n-type semi-

conductor can be obtained by substituting carbon atoms with

nitrogen atoms in graphene frameworks [13,14]. Theoretically,

the substitutional heteroatom doping can tune the band

structure of graphene, resulting in a metal-semiconductor

transition, thus expanding the applications of graphene

[15,16]. Up to now, almost all experimental and theaterical

works have focused on their electronic and thermal properties.
.
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Fig. 2 – Raman spectra of the RGO and NG samples obtained

at different annealing temperatures.
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However, little work has been done on the optical properties

of NG. In this paper, NG samples were synthesized by

annealing RGO in an ammonia atmosphere, and the depen-

dence of the nitrogen content on annealing temperature and

the type of doping of NG were studied. Moreover, the photolu-

minescence (PL) properties of NG at room temperature (RT)

were also investigated. The results showed that RGO exhibits

strong ultraviolet (UV) PL at 367 nm. Interestingly, by doping

it with N, the PL intensity of RGO can be quenched and the

quenching efficiency is closely related to pyridine N content.

2. Experimental

The RGO sheets were synthesized by chemical exfoliation of

natural flake graphite powder (500 mesh) followed by thermal

reduction, as reported previously [17,18]. The NG samples

(NG-300, NG-500, NG-700, and NG-800, numeric numbers de-

note the annealing temperature) were prepared from 300 to

800 �C for 1 h under an ammonia atmosphere. In short, a flow

of Ar gas (99.99%) with a flow rate of 100 sccm was main-

tained to get rid of air for 20 min. After heating from RT to

the desired temperature, the ammonia was introduced into

the reaction tube with the flow rate of 20 sccm for 1 h at atmo-

spheric pressure. After the furnace cooled to RT, the NG sam-

ple was obtained.

The morphologies of the samples were examined by trans-

mission electron microscopy (TEM) (Model JEOL-2010, Japan)

operated at an accelerating voltage of 120 kV. X-ray photo-

emission spectroscopy (XPS) measurements were performed

on a Thermo Fisher Scientific with Al Ka radiation. The

Raman spectra were obtained by an InVia Raman system

(Renishaw, England) using 514.5 nm laser as the light source.

The PL spectra were measured at ambient conditions by a

spectrofluorophotometer (Shimadzu RF-5301PC) using a Xe

lamp as the light source. For PL spectra investigation,

�0.03 mg of powdered sample was ultrasonically dispersed

in 1 mL of distilled water for 0.5 h. After that, the solution

was used.

3. Results and discussion

Fig. 1 shows the typical TEM images of the RGO and NG-500.

As can be seen from Fig. 1, NG-500 still maintains the two
Fig. 1 – Typical TEM images o
dimensional ultrathin flexible structure, but has more

corrugations and scrolling than RGO.

Shown in Fig. 2 are the Raman spectra of the RGO and NG

samples obtained at different annealing temperatures. All the

Raman spectra exhibit two prominent peaks of the D band

and G band as well as a very weak 2D band, which is typical

characteristic of chemically derived graphene [19–21]. It is

known that the D band is disordered band associated with

structural defects and partially disordered structures of the

sp2 domains, while G band corresponds to the first-order scat-

tering of the stretching vibration mode E2g observed for sp2

carbon domains. Generally, the intensity ratio of D band to

G band (ID/IG) is used to estimate the disorder of graphene

[21,22]. One can find that all the NG samples show higher

ID/IG (0.92–0.98) than RGO (0.81). This indicates that the NG

samples are more disordered than the RGO, which is consis-

tent with the corrugation and scrolling structure observed

by TEM investigations above. Moreover, similar to the

N-doped graphitic materials reported [19,22–24], the shift of

G band is due to the structural distortion of RGO caused by

the different bond distances of C–C and C–N. Thus, the larger

ID/IG and upshift of the G band observed for NG samples may

suggest the N doping in RGO. One can calculate the in-plane

graphite crystallite sizes (La) of the RGO and NG samples

based on Raman data by the formula [25]
f (a) RGO and (b) NG-500.
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La ðnmÞ ¼ ð2:4� 10�10Þk4ðID=IGÞ�1

Where k is the wavelength used for Raman measurements,

while ID and IG denote the intensity of the D band and G band,

respectively. The crystallite sizes of the RGO, NG-300, NG-500,

NG-700, and NG-800 samples are estimated to be 20.8, 18.3,

18.1, 17.2, and 17.5 nm, respectively. Clearly, the NG samples

show smaller crystallite sizes compared to RGO.
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Fig. 3 – (a) XPS spectra of the RGO and NG samples obtained at

and oxygen in the NG samples.

Table 1 – The contents of N, N-6, N-5, and N-Q in the NG samp

NG samples (at.%) NG-300

N content 4.02
N-6 content 1.62
N-5 content 1.81
N-Q content 0.59
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Fig. 4 – XPS spectra of the NG samples obtained at different an

distributions of the three N types. (c) Schematic representation
To detect the nitrogen content and bonding environment

of the C and N species of NG samples, XPS measurements

were employed. As shown in Fig. 3(a), the XPS spectra reveal

that the clear N signals exist in all the NG samples. The N

contents defined as 100 N/(C + N + O) at% of NG-300, NG-500,

NG-700, and NG-800 are 4.02, 5.7, 4.48, and 5.22 at%, respec-

tively. As summarized in Table 1, the N-doping levels in

RGO are in the range of 4–6%, which is dependent on anneal-

ing temperature. The NG-500 has the highest N content of
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5.7%, and NG-300 has the lowest one of 4.02% (Fig. 3(b)). More-

over, one can find that the atomic percentage of oxygen is re-

duced from 7.55% for RGO to 2.29% for NG-700, indicating that

some oxygen-containing functional groups were removed

during annealing. This is due to the formation of C–N bonds

and reduction effects of thermal annealing in ammonia [26].

To get information on the incorporation of nitrogen into

carbon, the N 1s spectra were fine-scanned (shown in

Fig. 4(a)). Shown in Fig. 4(a) are the N 1s spectra and the fitted

curves. The N 1s peaks of the NG samples were obtained and

each peak was deconvoluted into three subpeaks at 398.3,

400.1, and 401.8 eV. As illustrated in Fig. 4(c), the peaks at

398.3 and 400.1 eV can be assigned to pyridine-like (N-6) and

pyrrole-like (N-5), respectively. They refer to the N atoms

which contribute to the p system with one or two p-electrons

[27,28]. The peak at 401.8 eV corresponds to graphite-like

(N-Q), implying that the N atoms replace C atoms in the

RGO layers [28]. The portions of each N-configuration after

annealing are graphically summarized in Fig. 4(b). Based on

XPS results, the content of the N species at different anneal-

ing temperatures was quantitatively showed in Table 1. One

can see that N-doping takes place at basal planes and edges,

which is different from previous reports [13,29] that N-doping

would take place only at edges due to the higher reactivities.
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Fig. 6 – (a) The distributions of the three N types for the NG sam

dependence of the quenching efficiency on annealing temperat

content.
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Fig. 5 – (a) PL spectra of the RGO and NG samples with excitation

excitation wavelength from 220 to 260 nm.
Moreover, with the increasing of annealing temperature (i)

the N-Q portion continuously increases; (ii) the N-6 portion

increases significantly from 300 to 500 �C, then quickly de-

creases above 500 �C, and (iii) the N-5 portion remains rela-

tively steady. It is clear that NG samples have been

successfully synthesized by annealing RGO in an ammonia

atmosphere.

To explore the optical properties of the RGO and NG sam-

ples, PL study was performed. Shown in Fig. 5(a) are the PL

spectra of the RGO and NG samples with an excitation wave-

length of 220 nm. For RGO, a clear emission peak at ca. 367 nm

with a full width at half maximum of ca. 22 nm can be clearly

observed. The strong UV emission is consistent with that ob-

served by Shukla et al., which is attributed to the effects of

quantum confinement in RGO [30]. Interestingly, one can find

that (i) the NG samples exhibit a dramatic decreasing in the

intensities compared to the RGO; (ii) the decreasing in the

NG-500 is more apparent than other NG samples. Apparently,

doping RGO with N can result in fluorescence quenching,

which may attribute to the effective charge transfer between

N and RGO as reported by Schedin et al. [31].

Additionally, the PL spectra of most carbon materials are

dependent on excitation wavelength. However, the NG sam-

ples exhibit an excitation-independent PL behavior. The peak
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positions are almost invariable at ca. 367 nm when the excita-

tion wavelength is varied from 220 to 260 nm. Shown in

Fig. 5(b) is a typical example of excitation-independent PL

behavior. Moreover, with the excitation wavelength increas-

ing from 220 to 260 nm, one can find that the intensity of

the PL peak centered at 367 nm decreases rapidly and reaches

a maximum at an excitation wavelength of 220 nm.

Fig. 6(a) reveals that the distributions of the three N types

for the NG samples obtained at different annealing tempera-

tures. According to the calculations, the dependences of

quenching efficiency on annealing temperature and N-6 con-

tent are shown in Fig. 6(b) and (c), respectively. As shown in

Fig. 6(b), quenching of the fluorescence emission is 38% for

NG-300, while a much higher quenching of 76% is observed

for NG-500. Interestingly, one can find that the quenching effi-

ciency of NG samples is almost proportional to the N-6 con-

tent (shown in Fig. 6(c)). On the basis of the results, it is

reasonable to conclude that (i) N-6 can result in the fluores-

cence quenching and (ii) the quenching efficiency can be in-

creased greatly with the increase of N-6 content. In other

words, by controlling the N-6 content, it is possible to tailor

the quenching efficiency of NG samples.

The high efficiency quenching could be attributed to either

energy transfer or electron transfer between N and RGO [32].

Possible pathways for the fluorescence quenching of the NG

samples may be attributed to two possible competitive

processes, viz., photoinduced electron transfer (PET) and en-

ergy transfer. Similar fluorescence quenching has been ob-

served for the hybrids of carbon material with porphyrins,

and a PET mechanism has been demonstrated for these hy-

brids [7,33]. Therefore, after photoexitation, the inteamolecu-

lar donor–acceptor interaction between N and RGO in the NG

samples may have a charge transfer from N to RGO, resulting

in the observed fluorescence quenching. Considering the effi-

cient fluorescence quenching of NG, we believe that the

photoinduce electron and/or energy transfer from N to RGO

should play an important role for the quenching.

4. Conclusion

We have synthesized NG samples by annealing RGO in an

ammonia atmosphere. The study showed that RGO has UV

PL at 367 nm. The PL can be quenched by doping with N,

and the fluorescence quenching efficiency is closely related

to the pyridine N of NG samples. Thus, we have illustrated

how the nitrogen doping content and type, and fluorescence

quenching efficiency of NG samples can be manipulated. By

selecting an annealing temperature, one can tailor fluores-

cence quenching efficiency by tuning pyridine nitrogen con-

tent of NG samples.
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